We have
(a + b + c)⋅⎛⎝(1)/(a + b) + (1)/(b + c) + (1)/(c + a)⎞⎠ = 7⋅(7)/(10) = (49)/(10).
We also have:
(a + b + c)⋅⎛⎝(1)/(a + b) + (1)/(b + c) + (1)/(c + a)⎞⎠
= (a + b + c)/(a + b) + (a + b + c)/(b + c) + (a + b + c)/(c + a)
= 3 + (a)/(b + c) + (b)/(c + a) + (c)/(a + b).
This gives us
3 + (a)/(b + c) + (b)/(c + a) + (c)/(a + b) = (49)/(10),
then
(a)/(b + c) + (b)/(c + a) + (c)/(a + b) = (19)/(10).